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ABSTRACT 

The quaternion method of describing a rotation is 
a four-parameter method that can be used to relate coordinate 
systems and describe the attitude of a space vehicle. The 
principal advantages of the quaternion method are that it 
does not possess the singular points inherent in Euler angle 
methods, and that it requires the evaluation of fewer elements 
than does the direction cosine approach. Disadvantages of the 
quaternion method are that it is unfamiliar to many users at 
this time and that its elements do not lend themselves to 
intuitive interpretation as do the elements of Euler angle 
methods. 
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I. Introduction 

The basic problem of describing the orientation of 
one coordinate system with respect to another has usually been 
solved using either Euler angles or the direction cosine matrix. 
Another method, which uses a mathematical entity called a qua- 
ternion, has received attention in recent years and is to be 
used in the attitude control computations of the Skylab Apollo 

. Telescope Mount Digital Computer (ATMDC). The purpose of this 
memorandum is to bring together in one place the necessary 
fundamentals of the quaternion representation and to illustrate 
how it is applied in the attitude control computations for the 
Skylab Orbital Assembly (OA). Although some brief comparative 
remarks will be made, extensive comparisons between quaternions 
and other representations, and lengthy discussions of their 
relative advantages and disadvantages can be found elsewhere 
(References 1, 2, and 3 )  and will not be included in this memo- 
randum. 

The fundamental characteristics of the quaternion 
representation are given in Section 11. These include the 
definition of a quaternion, its basic algebraic properties, 
the representation of rotations by a quaternion, the derivation 
of the dynamical differential equations, solutions to these 
equations, and attitude error expressions. The application of 
these fundamentals to the attitude control function of the OA 
is discussed in Section 111. Section IV contains a brief dis- 
cussion of the Euler angle, direction cosine, and quaternion 
representations. The application of matrix algebra to qua- 
ternion products, and the solution to a basic quaternion dif- 
ferential equation are given in Appendices A and B i n  support 
of material given in Section 11. 

11. Fundamental Relationshim 

A. Quaternion Definition 

The basis for the quaternion representation of a 
rotation is Euler's theorem which states that the general dis- 
placement of a rigid body with one point fixed is a rotation 
about some axis (Reference 4 ) .  The quaternion has four elements 
which completely identify the direction of the axis of rotation 
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and the amount of rotation. The quaternion, 9, consists of a 
scalar element, q4, and a vector, q, and can be written as: - 

- 
where i, j ,  and E are unit vectors along the X, Y, and Z axes 
respectively.* If, in addition 

the quaternion is frequently referred to as a unit quaternion 
or versor. This property will be assumed for all quaternions 
that are used to identify rotations. However, it is frequently 
convenient to represent a vector as a quaternion with a scalar 
element equal to zero, in which case the unit magnitude prop- 
erty need not apply. 

A quaternion used to identify a rotation by an angle 
0 about an axis e is written 

0 0 q = cos + e' sin ;; 
L. .I 

- 

0 z = cos $j + (T  cosa +  cos^ + ~cosy) sin 

*The parenthetical notation of ( 2 )  is a convenient form 
for concisely displaying the characteristics of a quaternion 
and will be used often in this memorandum. Note also the con- 
vention of denoting a quaternion as an underlined character, 
a vector as a character with a line over it, and a scalar as 
a character without a line. 
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where cosa, COSB, and cosy are the direction cosines of the 
axis of rotation, e. A comparison of (1) and ( 4 )  identifies 
the quaternion elements as follows: 

- 

0 0 q3 = cosy sin - 2 , q1 = cosa sin - 

0 q2 = cosB sin 3 , 0 
2 q4 = cos - 

It is clear from ( 4 )  that the quaternion contains information 
not only about the axis of rotation and the magnitude, but also 
about the sense of the rotation. That is, the rotation quater- 
nions for a rotation of 0 about e' and for 360 -0 about -e are 
different, but only in the signs of all the elements. The 
smaller of the two rotations to the same endpoint always has a 
positive value for q4. On the other hand, a rotation of 0 

about e' and a rotation of -0 about -e' are both described by 
the same quaternion, which is convenient, since these corre- 
pond to the same physical motions. 

- 

The transpose of a quaternion is defined by 

When used to identify a rotation, this corresponds to a rota- 
tion of an angle 0 about the negative e axis. 

t 0 -  0 q = cos -e sin =j . 
c. LI 

B. Quaternion Operations 

1. Ouaternion Alcrebra 

The product of two quaternions, p and g, is defined - as the algebraic term-by-term product 

E9' (5) 
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- To evaluate this product, the products of r, j, and 5; are 
defined as 

After performing the multiplication of ( 5 ) ,  it is seen that 
the quaternion product can be expressed as 

where the vector products are the usual dot and cross products. 
Because of the vector cross product term, quaternion multipli- 
cation is not commutative. 

The identity quaternion is defined such that the 
product of any other quaternion with it is identically equal 
to itself. From (6), it is seen that the identity quaternion 
must have a unit scalar component and zero vector component, 
that is, the identity quaternion is (1,a) and 

The inverse of g, denoted by g-l, is defined by 

The derivative of a quaternion is defined by 

d9 . -. -. - = 9 = 44 + iql + jq, + dt . 



BELLCOMM, INC. - 5 -  

The following identities can now be quickly derived for a 
quaternion of any magnitude. 

-1 t 
9 = 9  

c = c(1,6) = (c,d) 

CCJ = (cq4, cp) where c is a scalar. 

2. Coordinate Transformation 

Consider the quaternion product 

where 9 is a unit quaternion relating two coordinate systems 
and - r is the quaternion representation of a vector, i.e., 

- 
r = ( 0 ,  r) . - 

After performing the multiplication of (7), it is seen that 
the scalar element of r’ is zero and hence r’ is also a 
quaternion representatron of a vector. Theproduct of, (7) has 
transformed the vector r from the original coordinate system 
to the second coordinate system. 



BELLCOMM. INC. - 6 -  

This can be illustrated by the following simple 
example with the aid of Figure 1. 
system, X, Y, 2, has been rotated through a positive angle of 
ninety degrees to form a new coordinate system, X’, Y’, 
The axis of rotation, e, is taken along the Z axis and a unit 
vector r is taken along the X axis. 

The original coordinate 

Z’ .  - 

X 

X’  

Figure 1 

- - 
- r = (o,r) = i 

-1 1 - r ’= 9 g g = 2 (1 - E, (i, (1 + A ,  = -5 . 

This indicates that the vector resolved in the second coor- 
dinate system is directed in the negative y’ direction, which 
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is obvious from Figure 1. 

The quaternion 9 relating two coordinate systems 
can be considered to be resolved in either system since the 
vector describing the axis of rotation is unchanged by the 
rotation. 

The coordinate transformation of (7) can be gener- 
alized to transform a quaternion from one coordinate system to 
another. By substituting a quaternion, E, for r in ( 7 )  and 
performing the multiplication, it can be seen &at the scalar 
element of E remains unchanged and the vector component trans- 
forms as illustrated previously. This is true for a E of any 
magnitude. 

3 .  Vector Rotation 

It can also be shown that the product 

describes a rotation of a vector in a positive direction within 
the original coordinate system. Performing this multiplication 
with the same r and 9 as in the previous example, the following 
result is obtaTned. 

The multiplication of (8) has redirected the vector from the X 
direction to the Y direction in the original coordinate system. 
This is easily verified by imagining a positive rotation of 
the vector of ninety degrees in Figure 1. 

4 .  Successive Transformations 

If two successive transformations between coordinate 
systems 1, 2, and 3 are described by 

and 
-1 

I 
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then the composite transformation from 1 to 3 can be described 
by 

where 9, - 
successive coordinate transformations to give 

This can be extended to any number of 3 - 9 1 2 9 2 3 '  

Each of the quaternions contained in (9) and hence (10) and 
(11) is resolved in either of its local coordinate systems. 

An alternate expression for g,, can be developed 
in which each of the quaternions is expressed in the initial 
coordinate system. This can be derived by transforming each 
of the quaternions of (11) into the first coordinate system 
as discussed in Section B . 2  above. The resulting expression 
is 

where the superscript 1 indicates that the quaternion is 
resolved in the first coordinate system. 

5. Direction Cosine Matrix 

The property of (7) to perform a coordinate trans- 
formation suggests that a relationship between the direction 
cosine matrix and the quaternion elements can be found. This 
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relationship can be produced by the straightforward multipli- 
cation of ( 7 ) ,  but an easier derivation is available using 
the matrix representation of quaternion products as discussed 
in Appendix A .  
cosine matrix, 

The quaternion representation of the direction 
[D], is developed in Appendix A and given below. 

The requirement for the direction cosine matrix 
orthonormality is given by 

, for k=j 
kj , for k#j C dkidji = 6 

i 

This eauation is satisfied identically by the elements of (13) 
for k f j .  
for the quaternion elements is necessary and sufficient. 

For the cases where k=j, the unit magnitude constraint 

C. ADDlications to Vehicle Dvnamics 

To maintain a knowledge of the orientation of a 
vehicle-fixed coordinate system relative to an inertial system, 
a relationship between the quaternion relating these systems 
and the rotational motion of the vehicle must be found. In 
pursuit of such a relationship, let Fx-, be a vehicle-fixed 
radius vector resolved in the vehicle system, ri the same 
radius vector resolved in the inertial system, and 9 be the 
quaternion which defines the rotation of the inertial system 
into the vehicle system. Then 

- 

and 
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A l s o ,  

- 10 - 

( r . )  = (0 ,Vi)  d v .  = - 
-1 d t  -1 

where  vi i s  t h e  v e l o c i t y  vec to r  reso lved  i n  t h e  i n e r t i a l  
s y s t e m ,  and t h e  r a d i u s  vec to r  i s  considered f i x e d  i n  t h e  
v e h i c l e  system (G = O ) .  Continuing, 

-V 

r .  g 9-l + q 9-l r .  g 4-l -1 v .  = g q  
-1 -1 -1 

-1 -1 -1 = i g  L i + L i ( 4 g  1 

The i d e n t i t y ,  9 9-l = (1,0), can  be d i f f e r e n t i a t e d  t o  g i v e  

S u b s t i t u t i n g  t h i s  r e s u l t  i n t o  ( 1 4 1 ,  

-1 
9 

where s = 4 9-l f o r  convenience. Refer r ing  back t o  (6), it 
i s  seen t h a t  t h e  only t e r m s  t h a t  s u r v i v e  t h e  s u b t r a c t i o n  i n  
(15)  are t h e  v e c t o r  c r o s s  product t e r m s .  The q u a t e r n i o n ,  
s r .  - r .  s ,  has  t h e  form - -1 -1 - 
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The following vector equation can then be written. 

- 
v = 2 s x :  i i 

Recalling that the velocity, radius, and angular velocity, 6, 
when resolved in the inertial system are related by 

- - - 
i '  v = i  x r  i i 

the following vector equation can be written. 

- 
6i = 2 s  

-1 , it is found that Examining s = (s4,s) = 9 9 
- 

- 

- - -  - I d  ( 1 ) = 0  . 
2 dt 

Expressing (16) as a quaternion equation, 

-1 
0 .  = 2 s  = 2 9  g - -1 

which gives 
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and 

s = T g i v  - 1  . 

- 12 - 

If the attitude rate sensors are mounted on the vehicle, as 
in a strapdown navigation scheme, expression (18) is the basic 
differential equation that relates the quaternion elements to 
the vehicle rotational motion, and is the equation that must 
be solved to maintain a knowledge of the vehicle attitude rela- 
tive to the inertial coordinate system. If the attitude rate 
sensors are mounted on an inertially oriented platform, then 
(17) is the basic differential equation that must be used. 

If an intermediate attitude reference system is used 
such that 

and 

the preceding development can be used to solve for and a 
similar approach can be used to solve for i. In this case, 

and proceeding as before, 
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In a manner analogous to the previous development for 4, it 
can be shown that 

i. = 2 ( &  9-l + g E -1 9 -1 
-1 

where ki is the angular velocity of the vehicle coordinate 
system relative to the inertial system, resolved in the iner- 
tial system. Continuing as before and using the results of 
(17) and (181, it follows that 

and 

where Av is the angular ve loc i ty  of t h e  vehicle coordiiiate 
system relative to the i n e r t i = l l  system, rssolved in t h e  vehicle 
system, and 6 is the angular velocity of the intermediate 
coordinate system relative to the inertial system, resolved 
in the intermediate system. If the attitude rate sensors are 
mounted on the vehicle, then (19) must be used to solve for E. 
If the attitude rate sensors are mounted on an inertial plat- 
form, (20) must be used. Solutions to the dynamical equations 
(18) and (19) are given in a later section when the strapdown 
equations of the ATMDC are discussed. 

-a 

D. Evaiuation of Attitude Error 

If two coordinate systems represent the desired and 
actual orientations of a space vehicle, then the misalignment 
between these systems can be described by an attitude error 
about each of the vehicle axes. If the quaternion E is used 
to identify the rotation that would rotate the desired vehicle 
orientation into the actual vehicle orientation, then the 
attitude errors can easily be determined from the elements of 
E. If I$ is the angle of rotation and c1 is the angle between 
the axis of rotation and the vehicle x axis, then 
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PIP4 = cosci 

- 14 - 

9 9 sin 2 cosz 

For small angles, 

9 9 - 9  . 
'z sin - COST - 2 

A l s o ,  

4, cosci = - 
9 

where I$, is the component of the rotation about the x axis, 
and in this case, the attitude error about the x axis. Sub- 
stituting into (21), the attitude error about the x axis is 
then found to be 

Similarly, the attitude errors about the y and z axes are 
given by 

and 

111. ATMDC Strapdown Calculations 

A. General 

The experiments that are to be performed during the 
Skylab mission require an accurate determination of the OA 
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orientation and of the attitude errors. To provide this, the 
ATMDC accepts signals from the attitude rate sensors, which 
are rate gyros mounted on the OA, and repetitively executes a 
set of strapdown calculations that use the quaternion formu- 
lation discussed in Section 11. These calculations, in con- 
junction with the outputs from the acquisition sun sensors, 
determine the attitude errors which are made available to the 
control system for corrective action. 

Three coordinate systems are used in the implemen- 
tation of the strapdown equations. These are (1) the solar 
inertial system, Xi, ( 2 )  the attitude reference system, Xa, 
and ( 3 )  the vehicle-fixed system, Xv. 

system is defined with its z axis pointed at the sun and its 
x axis near the orbital plane. Due to the precession of the 
orbit plane and the motion of the earth about the sun, the 
solar inertial system is not strictly an inertial system. 
enable the usage of the differential equations developed in 
Section I1 which require an inertial system, the Xi system 
as used by the strapdown equations is modified to be a piecewise- 
inertial system. Each orbital sunrise, the Xi system is 
aligned with a true solar oriented system and maintained 
inertially stationary throughout the next revolution. 

The solar inertial 

To 

The vehicle-fixed ccordhate systez, X has its V' 
z axis parallel te the  solar z x p r h c i i t  spar centeriine and 
the x axis along t h e  centerlice of the workshop and muitipie 
docking adapter, toward the CSM docking port. 

The attitude reference coordinate system, Xa, is 
an intermediate system that does not necessarily have any 
unique physically meaningful orientation. 
represents the computed desired orientation of the Xv system 
and any misalignment between the Xa and Xv systems indicates 

The Xa system 

the presence of attitude errors. 
is in the solar inertial attitude, the Xi and Xa systems will 
be parallel. During periods when the OA is in the z local 
vertical (Z/LV) attitude with the z axis aligned with the 
radius vector from the center of the earth, the Xa system will 
be in motion relative to the Xi system. 

During periods when the OA 

An attitude maneuver to a new desired attitude is 
accomplished by aligning the Xa and Xv coordinate systems at 
the beginning of the maneuver and then rotating the X system a 
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to a new attitude at a computed rate that will achieve the 
new attitude in the specified time interval. 
moves away from the Xv system toward the new attitude, attitude 
errors arise which, through the control system, cause the Xv 
system to follow the Xa system until the new attitude is 
achieved. 

As the Xa system 

These coordinate systems are related through the 
quaternions E and 9 as follows: 

x =  -a 

In these expressions, X. X and X are quaternion represen- 
tations of a vector resolved in the Xi, Xa, and Xv coordinate 
systems respectively. 

-1' -a' -V 

Near the beginning of the Skylab mission when the 
OA is still under control of the launch vehicle digital com- 
puter, the OA is placed in the s o k r  inertial attit~de. At 
this time, all three coordinate  systems are parallel, and as 
part of the ATMDC initialization procedures, E and 9 are each 
initialized to be the identity quaternion. 

Thereafter, E and 4 are rompi~f-er? freque~tly t~ reczlrd all 
movements of the coordinate systems relative to each other. 

B. Evaluation of 9 

The quaternion 9 relates the attitude reference and 
solar inertial coordinate systems (Xa and Xi) as shown in ( 2 2 ) ,  

and must satisfy the differential equation derived earlier for 
a strapdown system as equation (18). A solution to this equa- 
tion using a Taylor series expansion is given in Appendix B. 
The first four terms of the series, corresponding to derivatives 
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of 9 through the third order, were retained in this solution. 
The angular velocity in this expression is the angular velocity 
of the Xa system, is a computed value, and is constant except 
for brief periods near the beginning and end of attitude maneu- 
vers. The details of how this angular velocity is computed are 
given in a later section. 

Assuming that the derivatives of the angular velocity 
are negligible, equation (B3) can be used to evaluate 9. 

In this expression, 6 is the magnitude of the angular velocity, 
At is the computation cycle time of one second, q(t) is the 
last previous computed value of g, and q(t+At) is the new value 
of 9. In evaluating this expression in the Program Definition 
Document (PDD) 5 ,  6 is taken as the average of the current and 
the last previouscomputed values of the angular velocity. By 
identifying the terms of (24) enclosed within brackets as a 
quaternion 9, 9 can be evaluated as indicated below: 

where 

This procedure is used to eva.l iJate CJ ir! the  PEE and thc expres- 
sions shown above correspond to equations 11.2.9 through 
11.2.25 of the PDD. The matrix equivalent of (25) is used in 
the PDD to compute q(t+At). 

C. Evaluation of E 

The quaternion E relates the attitude reference and 
vehicle coordinate systems (Xa and Xv) as shown in (22). Both 
of these systems may be in motion, relative to an inertially- 
fixed system, and differential equation (19) can be used to 
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solve for 2. The angular velocities in this expression are 
the computed command rate of the Xa system, 6, and the sensed 
angular velocity of the OA, 6, obtained from the vehicle- 
mounted rate gyros. These angular velocities are relative to 
an inertial system and are resolved in the respective moving 
systems, Xa and Xv. Numerical integration can be used to 
evaluate p as shown below: 

- 

E(t) = E(t -At) + - At (p(t) + &t -At)) 2 

where 

1 

Normally, each of the components of is computed as the average 
of the outputs of two active rate gyros for the appropriate axis. 
The above expressions wed to evaluate 2 correspond to equations 
11.2.26 through 11.2.37 of the PDD. The computation r a t e  fsr 
these expressions is five times per second. 

To prevent the violation of the unit magnitude con- 
straint due to accumulated round-off errors, p is normalized 
once per second. The normalization is done with the familiar 
method of dividing each element by the square root of the sum 
of the squares of all elements. 

D. Evaluation of Attitude Errors 

For small attitude errors, it was shown earlier that 
attitude errors about the vehicle axes could be evaluated from: 

ox = 2PlP4 I o y  = 2P2P4 I 4 z  = 2P3P4 (26) 

This expression can be simplified by recalling that 

+ p4 = cos 7 
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where 0 is the total attitude error angle. For small angles, 
the magnitude of p4 will be very nearly one. Theoretically, 
however, the sign of p4 could be either positive or negative 
as can be seen from the following example. An attitude error 
of 

-lo I 0, = 0 

can also be described by 

- 0* = 359O I 4y - 0, = 0 . 

The latter convention would result in 

P4 = COS - 0 = COS 179.5O 1 -1 2 

Therefore, the attitude errors may be evaluated from 

= 2p2 sign p4 . $Y (27) 

These expressions are used in the PDD to compute the attitude 
errors, at a rate of five times a second. 

An assumption made in the development of (26) and 
(27) is that the attitude errors remain small. Therefore, p4 
must not be allowed to vary much from its initialization value 
of plus one, corresponding to no attitude error, and should 
always remain positive for values of 0 where (26) and (27) are 
valid. The attitude error expressions could then be further 
simplified to 
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0x = 2Pl I 0y = 2P2 I 0, = 2P3 

E. Execution of Attitude Maneuvers 

Changes in attitude can be requested by the crew, 
ground, or ATMDC via switches or commands. The ATMDC is 
capable of automatically orienting the vehicle to the solar 
inertial or to the Z/LV attitude from any other initial atti- 
tude. Also, a maneuver to a new attitude described by three 
Euler angles relative to the existing attitude can be accom- 
plished. 

When an attitude maneuver is requested, the atti- 
tude reference coordinate system is aligned parallel to the 
vehicle system. The angular velocity of the attitude refer- 
ence system is obtained by computing in sequence, the quater- 
nion relating the desired attitude to the initial attitude, 
the total angle of rotation, the required magnitude of the 
angular velocity, and the components .of the angular velocity 
as resolved in the vehicle system. To initially align the 
attitude reference system to the vehicle system, g and are 
updated as follows: 

Let X be the quaternion representation of a vector 
resolved in the vehicle-fixed coordinate system at the begin- 
ning of the maneuver, &, the quaternion representation of the 
same vector resolved in the vehicle-fixed system in its desired 
orientation at the end of the maneuver, and let c be the 
quaternion relating these two orientations of the vehicle-fixed 
coordinate system. Then 

-0 

x = c - l x c  . -f - - 0 -  
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If the final attitude is to be the solar inertial 
attitude, 

where 9 has been updated as in (29). If the final attitude is 
to be the Z/LV attitude, a further step is necessary to deter- 
mine - c. 
local vertical, solar inertial, and vehicle-fixed systems, 
respectively, then X1 can be expressed as 

If X1, Xi, and Xv represent a vector resolved in the 

and 

The quaternion b can be computed as the product of three 
simpler quaternzons that correspond to the Euler angles that 
would rotate the solar inertial attitude into the Z/LV atti- 
tude. These rotations are (1) a rotation about the vehicle Z 
axis to place the vehicle X axis in the orbital plane, ( 2 )  a 
rotation about the new vehicle X axis to place the vehicle Z 
axis in the orbital plane, and ( 3 )  a rotation about the Y axis 
tc! a l i r ; ~  the Z axis parailel to the radius vector. These 

and A q  respectively in angles are referred to as - v z ,  -qx, 

the PDD. From (ll), the product for b is given by 
tY 

- 

qx - q X  V V z -  z b = (cos , - ksin -) (cos -,- isin -) (cos :sin %) . 
2 2 2 2 2 - 

The quaternion - c is then computed from (30). 
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If the new commanded attitude is described by three 
Euler angles relative to the initial attitude, C is determined 
in the same manner as b was determined above. 
for this maneuver are given as 5,, 
z axis respectively and in that order. Therefore, 

- 
The Euler angles 

, 5, about the x, y, and [Y 

- 5 5, Esin 2). 5, Ex - 5, 5 
isin -1 (cos -+ jsin $1 (cos 2r 2 c = (cos - - 2' 

Having determined the quaternion relating the final 
and initial attitudes, the angle of rotation, 0 ,  is computed 
from 

The maneuver consists of three segments which are (1) a 
period of constant angular acceleration, (2) a period of con- 
stant angular velocity, and ( 3 )  a period of constant angular 
deceleration of the same duration as the first segment. The 
magnitude of the angular velccity, 8 ,  at any time during the 
maneuver is a function of 0, At, the angular acceleration, 
and the time since the beginning of the maneuver, t. It can 
be shown in a straightforward manner that the duration of the 
angular acceleration (or deceleration) segment is given by 

t a - - -  - At 
2 

.I 

where 0 
angular 
by 

is the angular acceleration. The magnitude of the 
velocity at any time during the maneuver is then given 

, t a L t < A t -  - ta 6 = { eta 
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Recalling the characteristics of the quaternion elements as 
given in Section 11, it can be shown that the components of 
the angular velocity about each of the vehicle axes can be 
computed as follows. 

c1 0 

c2 6 

1-1 

c 6  3 
2 =  
6 

These are the attitude rates at which the attitude reference 
system is driven during the maneuver and which are used in the 
evalilation of 9 and E discussed earlier. 

A test is made ear ly  in these computations to insure 
that the At specified is sufficiently large to prevent the 
angular velocity from exceeding a maximum allowable value. 
If At is too small, a new At is computed that corresponds to 
an acceptable value of the constant angular velocity of the 
second segment of the maneuver. Also, if the final attitude 
is the Z/LV attitude, a fourth segment is included in the 
maneuver to establish the angular velocity about the vehicle 
Y axis necessary to maintain the Z/LV attitude. 
the At used in (31) and (32) is decreased by the duration of 
tnis fourth segment. 

In this case, 

Other types of attitude maneuvers are necessary in 
the Skylab mission, such as momentum desaturation and random 
reacquisition maneuvers. While the details of implementing 
these differ somewhat from the maneuvers described above, the 
same concepts and techniques are applicable. 

IV. Concluding Remarks 

Although this memorandum is intended to be tutorial 
in nature and not a critical analysis of various methods of 
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describing attitude motion, some brief comparative remarks 
concerning the Euler angle, quaternion, and direction cosine 
methods are in order. 

In the Euler angle method, each of the Euler angles 
is evaluated by numerical integration, requiring the values 
of the derivatives of the Euler angles. It is the nature of 
every Euler angle system to possess singular points where the 
derivatives cannot be evaluated. These singular points are 
described by specific values of the second Euler angle that 
cause the derivatives of the first and third Euler angles to 
be infinite, thereby preventing evaluation of the Euler angles 
themselves. Therefore, there exist particular attitudes where 
the Euler angle system is inadequate, should the vehicle ever 
approach these attitudes. 

The direction cosine method does not have the sin- 
gularity problem of Euler angles but requires the evaluation 
of nine variables, or more than twice as many as in the 
quaternion method and three times as many as in the Euler 
angle method. The orthogonality conditions of the direction 
cosine matrix are sometimes difficult to achieve when eval- 
uating the direction cosine elements directly and complex 
procedures are sometimes required to eliminate accumulated 
round-off errors. 

The quaternion method requires the integration of 
one more variable than the E u l e r  angle method Gut does not 
have the singularity problem. The quaternion method is 
capable of all required attitude determination and vector 
transformation calculations without the need for the direction 
cosine matrix. If, however, the direction cosine matrix were 
desired, it may be preferable to compute it from the quater- 
nion elements as in (13). The orthonormality of the direction 
cosine matrix may be substantially easier to achieve when it 
is computed from the quaternion elements. 
Section 11, it is only necessary to normalize the quaternion. 
Also, computation of the direction cosine matrix from the 
quaternion elements is probably easier than computing these 
LAL~ll,=11c3 I L U I ~ ~  O U ~ L  arlgles. In t h e  latter case, the sine and 
cosine of each of the Euler angles is necessary. These are 
usually computed as truncated infinite series, requiring sub- 
stantially more computations to compute the direction cosine 
matrix from Euler angles than from the quaternion elements. 

As discussed in 

-1 --.....J-- c--- - - - -  - -- 

Disadvantages of the quaternion method are that it 
is less familiar than the direction cosine method to most 
users, and that its elements do not lend themselves to intui- 
tive interpretation as in the Euler angle method. 

102 ~-PHW-ZUIIS P. H. Whipple 
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Appendix A 

Matrix Applications to Quaternion Products 

Al. Matrix Representation of a Quaternion Product 

product, 
The notation used in the text for a quaternion 

is useful as a concise display of the contents of the product. 
However, in computing the elements of the product quaternion, 
this is of little value and the more convenient matrix con- 
vention is useful. The quaternion product can be expressed 
in either of two equivalent matrix forms. 

s,  
L 

s 2  

s3 

s4 

rq 
I 

For convenience, ( A 2 )  can also be expressed as 

where 
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[SI = [Mpl 
h 

r [Mq 

I 

94 93 -92 91 

-93 94 91 92 

92 -91 94 93 

-91 -92 -93 94 - 

As an aid in later manipulation of quaternion products, the 
following matrix partitioning can be done. 

where 

A =  
P , c = ip41 . i A 3  j P 

Summarizing, the quaternion product s = E 9 may be expressed 
in matrix notation by 

- 

(A4 1 

or 

Is3 = 1qJ = 

- 
I 

9 
At I B 
9 ;  

9 1  9 

1------ --e- 

l 
-Bt I C 

I PJ (A5 1 
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A2. Coordinate Transformation 

It was shown in the text that the quaternion product 

transforms a vector, r, from some initial coordinate system 
to a second coordinate system, where 9 is the quaternion re- 
lating these systems. From (A3), (A4), and (A5), this product 
can be expressed in matrix form as: 

or 

r -l 

t t  = A A + B  B t !  A t B  - B  C 
9 9  9 9 ;  q q  9 q  

By performing the indicated multiplications in (A7), it is 
seen that 

Bt At - C Bt = [0 0 01 
9 q  q q  
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A t B  9 9  - B  9 9  C =I] 
and B t B  + C  C = [ 1 ]  . 

9 9  9 9  

Incorporating these results into (A7 
equations 

= b t A t  9 9  + B 9 9  B‘) 

gives the two matrix 

r 

r 

It is seen that, as expected, the scalar element of r’ is zero 
and that r’ is indeed a vector in the new coordinate-system. 

coordinate transformation, [Dj, is given by 
f i l a ~ ,  7 7  ~- it Ts clear that the direction cosine matrix for the 

I D 1  = [A t t  A + B B‘] 
9 9  9 9  

c 

2 2 2 2 
91 - 9 2  - 93 + 9 4  

2 2 2 2 
-91 + 92 - 93 + 9 4  

2 2 2 2 
-91 - 9 2  + 93 + 94 

In the text, it was a l so  shown that the product 
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represented the rotation of the vector 2 within the same 
coordinate system. From familiarity with the directional 
cosine representation of rotations, it would be expected 
that the rotation matrix resulting from ( A 9 1  would be the 
transpose of ( A 8 ) .  This is easily verified by substituting 
-ql, -q2, and -q3 for ql, q2, q3 in ( A 8 ) ,  which is the dif- 
ference between expressions (A6) and ( A 9 ) .  
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Appendix B 

S o l u t i o n  of  A Quaternion D i f f e r e n t i a l  Equation 

A basic d i f f e r e n t i a l  equat ion  t h a t  must be so lved  
t o  e v a l u a t e  t h e  qua te rn ion  i s  de r ived  i n  t h e  t e x t  a s  equa t ion  
( 1 8 )  and i s  

where 6 i s  t h e  angu la r  v e l o c i t y  of t h e  moving coordinate  system 
relat ive t o  t h e  i n e r t i a l  system, as r e so lved  i n  t h e  moving 
system. 

The Taylor  series expansion f o r  t h e  qua te rn ion  q ( t )  
i s  g iven  by 

Eva lua t ion .o f  t h e  d e r i v a t i v e s  through t h e  t h i r d  o rde r  g i v e s  

1 ' *  ... 
g (t)  = 7 g ( t ) P  + + ; q ( t ) ' i '  
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The identity 

- - 
2 2 - -  6 6 = (0,;) (0,;) = (-(i) ,O) = -(6) 

was used in the above expression for the derivatives. Sub- 
stituting these expressions into (B2) gives 

If the angular velocity is constant, or very slowly changing, 
this expression can be simplified to 
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